
54 The Delphi Magazine Issue 32

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Grid Cell Positioning

QHow can I programmatically
change the current cell in a

DBGrid?

AYou can change the
currently selected cell in a

relative manner with reasonable
ease. You use the grid’s Select-
edIndex property to go left and
right and the underlying dataset’s
Next and Prior methods (as well as
MoveBy) to go up and down.

GridMov.Dpr on this month’s
disk shows the idea. It has a quar-
tet of buttons to allow navigating
around a grid (see Figure 1). The
buttons have Tag values to differen-
tiate between them, and there are
two shared event handlers to
implement what is required (see
Listing 1).

The buttons are enabled and dis-
abled as required by two other
event handlers: one that is trig-
gered when a field in a different
column of the grid is selected and
one when the current record
changes (see Listing 2).

Application And
Window Handles

QDo you understand how the
result of ShellExecute can be

used? What I would like to do is find
the window handle of the applica-
tion I’ve just run so I can use
window calls like IsWindowVisible
with it. I don’t know the difference
between a window handle and
application handle.

AFirst things first. For certain
operations on launched ap-

plications, you can refer to Are You
Running? in Issue 28’s Clinic.

Next, application handles (or,
more correctly, task handles in

➤ Figure 1

procedure TForm1.btnUpAndDownClick(Sender: TObject);
begin
{ Both up and down buttons share this event handler }
{ Move field pointer up or down one record }
DataSet.MoveBy(TComponent(Sender).Tag);

end;
procedure TForm1.btnLeftAndRightClick(Sender: TObject);
begin
{ Both left and right buttons share this event handler }
{ Move field pointer left or right one field }
Grid.SelectedIndex := Grid.SelectedIndex + TComponent(Sender).Tag

end;

➤ Listing 1

procedure TForm1.DBGrid1ColEnter(Sender: TObject);
begin
{ When moving from field to field, enable/disable buttons as appropriate }
btnLeft.Enabled := Grid.SelectedIndex > 0;
btnRight.Enabled := Grid.SelectedIndex < Grid.FieldCount - 1;

end;
procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
{ When moving from record to record, enable/disable buttons as appropriate }
btnUp.Enabled := not TDataSource(Sender).DataSet.BOF;
btnDown.Enabled := not TDataSource(Sender).DataSet.EOF;

end;

➤ Listing 2

16-bit Windows and process han-
dles in Win32) are numbers that
Windows uses to uniquely identify
individual programs. Window han-
dles are numbers that Windows

uses to uniquely identify all the
windows in existence in the
current Windows session. They
are different things altogether:
remember that one application

56 The Delphi Magazine Issue 32

may contain many different
windows.

Finally, you will find that in 32-bit
Windows ShellExecute is not as
handy as the newer ShellExe-
cuteEx. ShellExecute returns an
instance handle, a number that
uniquely identifies an application
instance within a given address
space. In truth, an instance handle
is simply the address of the
instance’s data segment. However,
in Win32 land, all application
instances are loaded into separate,
parallel, address spaces. The
upshot of this is that all applica-
tions load at the same address in
their individual address spaces
and so instance handles tend to
often have the same values, making
them worthless.

ShellExecuteEx provides you
with a more useful process handle.
Process handles are used to iden-
tify a process in the Windows ses-
sion, but unfortunately they are
not too useful when trying to find
which windows belong to a given
process. CreateProcess is a more
realistically useful API in that it
returns both a process handle (and
also a process identifier) along
with a thread handle (and thread
identifier). A thread handle identi-
fies one thread in the current Win-
dows session. CreateProcess gives
you the handle of the application’s
primary thread.

The difference between handles
and identifiers can be explained
like this. Threads and processes
are uniquely identified by their

function EnumFunc(Wnd: HWnd; PWnd: PHandle): Bool; stdcall;
begin
//Terminate the enumeration
Result := False;
//Return the window handle
PWnd^ := Wnd

end;
procedure TForm1.FormCreate(Sender: TObject);
var
CString: array[0..Max_Path] of Char;
SI: TStartupInfo;
PI: TProcessInformation;

begin
//Set open dialog to look in Windows directory
GetWindowsDirectory(CString, SizeOf(CString));
dlgOpen.InitialDir := CString;
if dlgOpen.Execute then begin
//Launch chosen app
GetStartupInfo(SI);
Win32Check(CreateProcess(nil, PChar(dlgOpen.FileName),
nil, nil, False, 0, nil, nil, SI, PI));

//Wait for main window to initialise
WaitForInputIdle(PI.hProcess, Infinite);
//Loop thru all app's windows
EnumThreadWindows(PI.dwThreadId, @EnumFunc, Longint(@Wnd));
//Fill listbox with info on the main window
DescribeWnd(Wnd, lstWindows.Items);

end
end;

➤ Listing 3

identifiers. The handles, however,
may not be unique: there may be
several process handles which all
identify a given process, and the
same may be true for threads.

From the thread identifier you
can find all the windows created
from within that thread using
EnumThreadWindows. The project
Launch.Dpr offers some code to do
the required business (see Listing
3). Having launched an application
and waited for the first window to
start processing messages, it
starts looping through the win-
dows created in the thread identi-
fied by the thread identifier
supplied by CreateProcess. The
enumeration routine, EnumFunc,
makes the assumption that the
first window found will be the main
window and so stores its window
handle in the variable whose
address was passed through from
the call to EnumThreadWindows. The
enumeration is then promptly
stopped by returning False.

The next step performed by this
demo project is to take the window
handle and pass it through to
various Windows API calls to find
things out about it. This
information is written into a list-
box thanks to the DescribeWnd rou-
tine (see Listing 4 and Figure 2). As
well as simple analysis, the code
makes its own application icon
mimic the target window’s icon
and also flashes the target window
using a timer.

➤ Listing 4

procedure DescribeWnd(Wnd: HWnd; List: TStrings);
const
FlagStr: array[Boolean] of String = ('not ', '');

var
CString: array[0..Max_Path] of Char;
PID, TID: DWord;
Rect: TRect;

begin
with List do begin
BeginUpdate;
try
//Check the window is valid
if not IsWindow(Wnd) then begin
Add('Window is not valid');
Abort

end;
Add(Format('Window handle = $%x', [Wnd]));
//Get window caption
Win32Check(Bool(GetWindowText(Wnd, CString,
SizeOf(CString))));

Add(Format('Window caption is "%s"', [CString]));
//get window dimensions
Win32Check(GetWindowRect(Wnd, Rect));
with Rect do
Add(Format('Window co-ordinates are ‘+
‘(%d,%d)-(%d,%d)', [Left, Top, Right, Bottom]));

Add(Format('Window is from app with instance handle‘+
’ of $%x', [GetWindowLong(Wnd, gwl_HInstance)]));

//Get thread id & process id of owning app

TID := GetWindowThreadProcessID(Wnd, @PID);
Add(Format('Window is from app with process ‘+
‘identifier of $%x', [PID]));

Add(Format('Window is from app with primary ‘+
‘thread identifier of $%x', [TID]));

Add(Format('Window has ID of $%x',
[GetWindowLong(Wnd, gwl_ID)]));

Add(Format('The window is %svisible',
[FlagStr[IsWindowVisible(Wnd)]]));

Add(Format('The window is %sa Unicode window',
[FlagStr[IsWindowUnicode(Wnd)]]));

Add(Format('The window is %senabled',
[FlagStr[IsWindowEnabled(Wnd)]]));

Application.Icon.Handle :=
GetClassLong(Wnd, gcl_HIcon);

Add('The window''s icon has been set as this ‘+
‘ application''s icon');

Add('The window''s caption bar should be flashing')
finally
EndUpdate

end
end

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
//Flash the window's caption bar
if IsWindow(Wnd) then
FlashWindow(Wnd, True)

end;

April 1998 The Delphi Magazine 57

If you are still using Delphi 1
under Windows 3.1x then an alter-
nate project Launch1.Dpr might be
helpful. It tries to do as much of the
same as possible, using Windows
API calls and the ToolHelp library.

DLL Failure

QI have a DLL which was writ-
ten in Delphi 1 and which has

since been recompiled under
Delphi 3. Whenever I run an appli-
cation written and compiled in
Delphi 3 and which requires the
DLL on Windows NT I get the
following error message:

‘The dynamic link library XXXX
could not be found in the specified
path C:\dlb\exe;.;C:\WINNT\System32;
C:\WINNT\System...’

I have copied my ‘XXXX.DLL’ into
every directory mentioned in the
path statement but the error per-
sists. Everything works fine under
Windows 95 with just one copy of
the DLL in C:\dlb\exe which is my
.EXE and .DLL location. What is the
problem? Can you help?

AThis one is quite a common
mistake when moving from

16-bit Windows to 32-bit Windows.
Your import declaration must have
the extension specified in the DLL
name. 16-bit Windows insists on
no extensions. Windows 95 doesn’t
mind either way. Windows NT,
however, insists on an extension,
so it’s best to use one when writing
for 32-bit Windows platforms.

Listing 5 shows source code for a
simple DLL. It is written using just a
project file, with no Pascal units,
for brevity. Listing 6 then shows an
import unit containing an appro-
priate import declaration that
some application, or indeed
another DLL, can use to link to the
routine in Listing 5. You can see
how conditional compilation can
ensure that the source code will
compile in 16- and 32-bit compilers.

To show the DLL working, a
project Exe.Dpr is supplied that
makes use of the DLL’s Pow routine.
Don’t forget to load and compile
Dll.Dpr (but don’t run it) before
trying to run Exe.Dpr.

➤ Figure 2

One final point: a 16-bit DLL can
only be accessed by another 16-bit
module (EXE or DLL). Similarly, a
32-bit DLL can only be accessed by
a 32-bit module. In other words, the
two projects will need to be com-
piled by the same Delphi version in
order to work.

Playing Videos

QThe TMediaPlayer compo-
nent can play a video file by

way of its FileNameproperty, as can

library Dll;
uses
WinTypes;

function Pow(X, Y: Double): Double; {$ifndef Win32}export{$else}stdcall{$endif};
begin
if X = 0 then
if Y = 0 then
Result := 1

else
Result := 0

else
Result := Exp(Ln(X) * Y);

end;
exports
Pow index 1;

begin
end.

➤ Listing 5

unit ImportU;
interface
function Power(X, Y: Double): Double;
implementation
{ 16-bit OS require _no_ extension in import declaration }
{ 32-bit: NT requires extension, Win95 doesn't mind }
const
DLLName = 'DLL'{$ifdef Win32}+'.DLL'{$endif};

{ 16-bit apps typically link by number }
{ 32-bit apps typically link by name }
function Power(X, Y: Double): Double;
external DLLName {$ifdef Win32}name 'Pow'{$else}index 1{$endif};

end.

➤ Listing 6

the 32-bit TAnimate component. Of
course, as their names suggest,
these properties rely on the video
file being a stand-alone separate
file. I would prefer to merge my
videos into my EXE, maybe as re-
sources. How do I do this? And is it
much the same for sound files?

ABefore looking at the ques-
tion itself it may be worth

going through the steps required
to store a resource in an EXE or DLL
file, since although they are fairly

58 The Delphi Magazine Issue 32

simple, they are not necessarily
obvious.

Since this question asks about
videos and sound files, I will deal
with an AVI and a WAV file. The par-
ticular multimedia files in this
example scenario are fairly
common and should be found on
any 32-bit Windows installation
with Delphi 3 installed on top. I am
assuming Delphi 3 in this case,
since the TAnimate component was
referred to, and Delphi 2 has effec-
tively been obsoleted by Delphi 3.

First of all, we make a new appli-
cation and save it. The sample proj-
ect supplied on this month’s disk
has been saved with names of
AVITest.Dpr and AVITestU.Pas.

Next, choose File|New...|Text
to make a new text file. This can be
saved as a resource script (.RC
file). The sample file is VidRes.RC.
A textual resource script is what
gets compiled into a binary
resource file. Note that it is very
important to choose a name that is
different to the project name
(ignoring the extensions).

Insert the pair of lines from List-
ing 7 to the text file (changing the
paths where necessary). Notice
the words AVI and WAVE used to
identify the resource types. Also
note that you can optionally
choose numeric identifiers for the
individual resources, but I have
used the textual identifiers Cool
and Ding.

Now we need to compile this
resource script. To help accom-
plish this, Borland supply a
command-line resource script
compiler called BRCC32.EXE in
Delphi’s BIN directory. You might
want to copy this into some direc-
tory that is on the DOS path to

Cool AVI “c:\delphi3.0\Demos\CoolStuf\Cool.AVI”
Ding WAVE “c:\windows\media\ding.wav”

➤ Listing 7

avoid typing lengthy directory
paths. To facilitate launching this
from the Delphi IDE, choose Tools |
Configure Tools... | Add... and fill
in the edit boxes like this:

Title: Resource Compiler

Program: Command.Com

Parameters: /K BRCC32 $EDNAME $SAVE

The reason I launched BRCC32
through COMMAND.COM with a /K
parameter is so that the DOS ses-
sion definitely remains when the
compiler has finished its work.
This means that any errors will still
be visible on the screen and do not
immediately disappear. The two
terms starting with a $ sign are
macros that cause the current
editor file to be saved and then
cause the full name of the editor file
to be passed to BRCC32.

Finally you can press OK and then
Close to finish adding the menu
item onto the Tools menu. Now
choose Tools | Resource Compiler.
Hopefully you won’t get any error
messages, but if you do you will see
them. If the compilation succeeds,
you will get a file with a .RES exten-
sion. The reason for the rule about
choosing a resource script with a
name different to the project file is
that Delphi manages a resource file
of its own, named after the project
file. If you place any resources in a
similarly named resource file, they
will be overwritten by Delphi.

Having got a resource file
(VidRes.Res) we now need to get it
bound in to our executable. This is
done with a $R compiler directive.
All Delphi form units have a $R
directive to bind their associated
.DFM form file into the target binary
file. It usually looks like this:

{$R *.DFM}

The asterisk expands to the cur-
rent editor file name. We need to
add another directive into our
AVITestU.Pas file like this:

{$R VidRes.Res}

Now the resources will be present
in the EXE upon compilation. So the
next task is to work out how to
access them.

In the case of the TAnimate com-
ponent, this job is quite straight-
forward as there are runtime
properties designed for the job.
Depending upon whether you
tagged your resource with a name
or an identifying number (recall
that we used a name for both of
ours) you can set the ResID or Res-
Name property before setting the
Activeproperty to True. Do remem-
ber that a TAnimate can only deal
with silent AVI files, which could
potentially be overly restrictive.
Listing 8 shows the very short
event handler needed for this.

If the resource is in another
module, you can use the ResHandle
property to specify the module
handle or instance handle of the
module containing the video. For
example, if you compiled the
resources into a resource DLL, you
could load the DLL with LoadLi-
brary or maybe LoadLibraryEx, and
assign the returned module handle
to ResHandle. If you do this, don’t
forget to unload the library before
termination.

In the case of the media player,
things appear to be rather trickier.
The component does not surface a
way of specifying a resource, and I
didn’t find a lower-level Windows
way of getting around the problem.
So, the workaround appears to be
to write code to store the video
resource into a temporary file
(which your application should
delete upon termination) and use
the normal FileName property.

The code in Listing 9 uses the
GetTempPath API to find a suitable
temporary directory to put the file
in. GetTempPath returns a 0 upon
failure or non-zero upon success.
Bearing this in mind the return
value is typecast into a Bool and

const ResName = 'Cool'
procedure TfrmAVIResource.Button1Click(Sender: TObject);
begin
Animate1.ResName := ResName;
Animate1.Active := True;

end;

➤ Listing 8

60 The Delphi Magazine Issue 32

passed to the Delphi 3 routine
Win32Check. Bool is used instead of
Boolean because Bool considers a
bit pattern of 0 to be False and any
other bit pattern to be True. Boolean
on the other hand only considers
the least significant bit, and so an
arbitrary non-zero bit pattern
might be interpreted as True or
False.

The code creates a TResourceS-
tream to access the resource. Note
the use of the string AVI in the con-
structor to indicate the resource
type. A TFileStream is then used to
copy it to a file.

Where the TAnimate can only deal
with silent AVI files, the media
player can deal with any type of file
supported by your installed multi-
media drivers. So it can potentially
deal with AVIs, QuickMovies,
RealAudio files, MPEG videos,
wave files and so on.

The two approaches to playing
the wave resource in this project
both involve dedicated multimedia
API calls: SndPlaySound and Play-
Sound. SndPlaySound can play a wave
file from disk or from a memory
block (via a pointer). PlaySound can
additionally read directly from a
resource. The TResourceStream
object helps with SndPlaySound as,
once it has been associated with a
resource, you can use the Memory
property to point to the beginning
of the resource data. Listing 10

procedure TfrmAVIResource.Button3Click(Sender: TObject);
begin
PlaySound('Ding', HInstance, snd_Resource or snd_Sync);

end;
procedure TfrmAVIResource.Button4Click(Sender: TObject);
begin
with TResourceStream.Create(HInstance, 'Ding', 'WAVE') do
try
SndPlaySound(Memory, snd_Memory or snd_Sync);

finally
Free

end
end;

➤ Listing 10

shows the two pieces of logic.
Again, note the use of the string
WAVE to identify the resource type
to TResourceStream.

Figure 3 shows the program run-
ning the two videos. You can see
that the Transparent property of
the TAnimate can help improve the
appearance of some AVI clips.

The code that refers to the
TResourceStream class is restricted
to working in 32-bit applications as
this class did not exist in Delphi 1.
If you wish to get similar logic into
a Delphi 1 project, then you will
need to use code like Listing 11 to
retrieve a pointer to the memory
block containing the resource.
Listing 11 shows how to play a
wave resource in a 16-bit

application.
Incidentally, I have

also supplied an
additional sample
project called Video.Dpr
that allows you to load
arbitrary video files and
play them on a resizable
form as well as full
screen.

var
HResInfo, HGlobal: THandle;
ResPtr: Pointer;

...
HResInfo := FindResource(HInstance, 'Ding', 'WAVE');
if HResInfo = 0 then Abort;
HGlobal := LoadResource(HInstance, HResInfo);
try
if HGlobal = 0 then Abort;
ResPtr := LockResource(HGlobal);
try
if not SndPlaySound(ResPtr, snd_Memory or snd_Sync) then
raise Exception.Create('Failed :-(')

finally
UnlockResource(HGlobal)

end
finally
FreeResource(HResInfo)

end

➤ Listing 11

➤ Listing 9

const
ResName = 'Cool';

var
FileName: String;

procedure TfrmAVIResource.Button2Click(Sender: TObject);
var
Buf: array[0..Max_Path] of Char;
FS: TFileStream;
RS: TResourceStream;

begin
RS := TResourceStream.Create(HInstance, ResName, 'AVI');
try
Win32Check(Bool(GetTempPath(SizeOf(Buf), Buf)));
FileName := StrPas(Buf) + ResName + '.AVI';
MediaPlayer1.Close;
FS := TFileStream.Create(FileName, fmCreate);
try
FS.CopyFrom(RS, 0)

finally
FS.Free

end;
MediaPlayer1.FileName := FileName;
MediaPlayer1.Open;
MediaPlayer1.Play;

finally
RS.Free

end
end;
procedure TfrmAVIResource.FormDestroy(Sender: TObject);
begin
DeleteFile(FileName)

end;

➤ Figure 3

	Grid Cell Positioning
	Application And Window Handles
	DLL Failure
	Playing Videos

